Sains Malaysiana 53(12)(2024): 3377-3388
http://doi.org/10.17576/jsm-2024-5312-20
Extraction
Efficiency Study of Dysprosium and Neodymium from Acetic Leaching Solution of
Xenotime by Di-(2-Ethylhexyl) Phosphoric Acid
(Kajian Kecekapan Pengekstrakan Disprosium dan Neodimium daripada Larutan Lesap Asetik Xenotim oleh Asid Fosforik Di-(2-Etillheksil))
KHAIRONIE
MOHAMED TAKIP1,2, NOORASHIKIN MD SALEH1,*,
ROSHASNORLYZA HAZAN2 & ABDULLAH AMRU INDERA LUTHFI1
1Department of Chemical and Process
Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Material Technology Group of Industrial Technology Division,
Malaysia Nuclear Agency, 43000 Bangi, Selangor,
Malaysia
Diserahkan: 26 September 2023/Diterima:
9 Oktober 2024
Abstract
The
increasing importance of rare earth elements (REEs) in advanced technologies
has prompted extensive research on their extraction, notably neodymium (Nd) and
dysprosium (Dy), critical components for neo-magnet production. Researchers are
actively exploring Nd and Dy recovery from both primary and secondary REE
sources, often employing solvent extraction post-acid leaching for effective
separation. In this context, a study focused on extracting Nd and Dy from local
xenotime minerals utilizing acetic acid (CH3COOH) as the leaching
solution and Di-(2-ethylhexyl) phosphoric acid (D2EHPA) in kerosene at a 30%
concentration as the organic solvent. Energy Dispersive X-Ray Fluorescence
(ED-XRF) analysis gauged Nd and Dy concentrations pre and post-extraction. The
study identified optimal conditions, showing peak extraction efficiency: 99.4%
for Nd and 99.3% for Dy, achieved using a 1M leaching solution concentration
and a 1:1 aqueous-to-organic (A/O) phase volume ratio. The extraction process
demonstrated highest efficacy at 30 °C within a 20-min timeframe. Consequently,
the investigation highlights the potential of acetic acid as a xenotime
leaching medium for Nd and Dy extraction with D2EHPA. Therefore, this study proves
that CH3COOH is potentially be used as the leaching media of
xenotime for the extraction of Nd and Dy with D2EHPA.
Keywords:
Dysprosium; D2EHPA; neodymium; rare earth elements; xenotime
Abstrak
Kepentingan yang semakin meningkat terhadap unsur bumi jarang (REEs) dalam teknologi canggih telah merangsang penyelidikan yang meluas terhadap pengambilan mereka, terutamanya neodimium (Nd) dan disprosium (Dy), komponen penting untuk pengeluaran neo-magnet. Penyelidik sedang mengkaji pemulihan Nd dan Dy daripada sumber REE utama dan sekunder, sering kali menggunakan pengekstrakan pelarut selepas pelarutan asid untuk pemisahan yang berkesan. Dalam konteks ini, satu kajian memberi tumpuan kepada pengeluaran Nd dan Dy daripada mineral xenotim tempatan dengan menggunakan asid asetik (CH3COOH) sebagai larutan pelarutan dan Di-(2-etilheksil) asid fosforik (D2EHPA) dalam kerosin pada kepekatan 30% sebagai pelarut organik. Analisis Serakan Tenaga Pendarfluor Sinar-X (ED-XRF) telah mengukur kepekatan Nd dan Dy sebelum dan selepas pengekstrakan. Kajian ini mengenal pasti keadaan optimum, mendedahkan kecekapan pengekstrakan puncak: 99.4% bagi Nd dan 99.3% bagi Dy, dicapai dengan menggunakan kepekatan larutan pelarutan 1M dan nisbah isi padu fasa akuos-ke-organik (A/O) 1:1. Proses pengekstrakan menunjukkan keberkesanan tertinggi pada suhu 30 °C dalam tempoh 20 minit. Akibatnya, penyelidikan ini menyoroti potensi CH3COOH sebagai medium pelarutan xenotim untuk pengekstrakan Nd dan Dy dengan D2EHPA. Oleh itu, kajian ini membuktikan bahawa CH3COOH berpotensi digunakan sebagai medium pelarutan xenotim untuk pengekstrakan Nd dan Dy dengan D2EHPA.
Kata kunci: Disprosium; D2EHPA; neodimium; unsur nadir bumi; xenotime
RUJUKAN
Altansukh Batnasan, Ariunbolor Narankhuu, Ariuntuya Battsengel, Kazutoshi Haga & Atsushi Shibayama. 2021. Effect of organic extractants on the
extraction of rare earth elements from sulphuric acid leach liquor. Atlantis
Highlights in Chemistry and Pharmaceutical Sciences 2: 142-148.
Arellano Ruiz, V.C., Kuchi,
R., Parhi, P.K. & Lee, J.Y. 2020. Environmentally
friendly comprehensive hydrometallurgical method development for neodymium
recovery from mixed rare earth aqueous solutions using organo-phosphorus
derivatives. Scientific Report 10: 16911.
Ariffin, M.M., Sohaimi,
N.M., Yih, B.S. & Saleh, N.M. 2019. Magnetite
nanoparticles coated with surfactant Sylgard 309 and
its application as an adsorbent for paraben extraction from pharmaceutical and
water samples. Analytical Methods 11(32): 4126-4136.
Balaram, V. 2019. Rare earth elements: A review of
applications, occurrence, exploration, analysis, recycling, and environmental
impact. Geoscience Frontier 10: 1285-1303.
Battsengel, A., Batnasan,
A., Narankhuu, A. & Haga,
K. 2018. Hydrometallurgy recovery of light and heavy rare earth elements from
apatite ore using sulphuric acid leaching, solvent extraction and
precipitation. Hydrometallurgy 179: 100-109.
Cao, S., Zhou, C., Pan, J., Liu, C., Tang,
M., Ji, W., Hu, T. & Zhang, N. 2018. Study on influence factors of leaching
of rare earth elements from coal fly ash. Energy and Fuels 32(7):
8000-8005.
Chen, Z., Li, Z., Chen, J., Kallem, P., Banat, F. & Qiu,
H. 2022. Recent advances in selective separation technologies of rare earth
elements: A review. J. Environ. Chem. Eng. 10(1): 107104.
Dushyantha, N., Batapola,
N., Ilankoon, I.M., Rohitha, S., Premasiri,
R., Abeysinghe, B., Ratnayake, N. & Dissanayake, K. 2020. The story of rare
earth elements (REEs): Occurrences, global distribution, genesis, geology,
mineralogy and global production. Ore Geology Reviews 122: 103521.
Farzaneh Sadri, Amir Mohammad Nazari & Ahmad Ghahreman. 2017. A review on the cracking, baking and
leaching processes of rare earth element concentrates. Journal of Rare
Earths 35(8): 739-752.
Gergoric, M., Barrier, A. & Retegan,
T. 2019. Recovery of rare-earth elements from neodymium magnet waste using
glycolic, maleic, and ascorbic acids followed by solvent extraction. Journal
of Sustainable Metallurgy 5: 85-96.
Guan, Q., Sui, Y., Yu, W., Bu, Y., Zeng,
C., Liu, C., Zhang, Z., Gao, Z., & Ru-an, C. 2022. Moderately efficient
leaching of rare earth elements from phosphogypsum via crystal regulation with EDTA-2Na during gypsum phase transformation and
recovery by precipitation. Hydrometallurgy 214: 105963.
Hazan, R., Kones, J., Takip, K., Sapiee, N., Azhar, N. & Paulus, W. 2019. Recovery of thorium and
rare earth element (REE) from different particle size of xenotime mineral. Journal
of Nuclear and Related Technologies 16(02): 25-30.
Hussain, M.E.A. & Smith, R.F. 2023.
Extraction techniques in analytical chemistry. Analytical Chemistry Review 45(3): 301-320.
Irfana Kabir Ahmad, Zawawi Samba Mohamed, Nur Fardilla Amrul,
Chong Wai Quan, Nurul Ain Abdul Jalil, Noor Ezlin Ahmad Basri & Mohd Reza
Azmi. 2021. Composting fruit and vegetable waste using black soldier fly
larvae. Jurnal Kejuruteraan 33(4): 837-843.
Jacqueline, K., Norhazirah,
A., Nur Aqilah, S. & Khaironie, M.T. 2019.
Alkaline fusion of Malaysian monazite and xenotime for the separation of
thorium and uranium. Jurnal Sains Nuklear Malaysia 31(1):
37-41.
Jiang, X., Liu, Y., Wang, W. & Chen, H.
2023. Optimization of washing parameters to enhance impurity removal during
mineral processing. Minerals Engineering 208: 107618.
Ji, B., Li, Q. & Zhang, W. 2022.
Leaching recovery of rare earth elements from the calcination product of a coal
coarse refuse using organic acids. Journal of Rare Earths 40(2):
318-327.
Jowitt, S.M., Werner, T.T., Weng, Z. & Mudd,
G.M. 2018. Recycling of the rare earth elements. Current Opinion in Green
and Sustainable Chemistry 13: 1-7.
Mancheri, N.A., Sprecher, B., Bailey, G., Ge, J.
& Tukker, A. 2019. Effect of Chinese policies on
rare earth supply chain resilience. Resources, Conservation and Recycling 142: 101-112.
Miller, J., Zhang, L. & Wang, L. 2019.
Environmental impacts of organic versus mineral acids in leaching processes. Environmental
Science & Technology 53: 987-995.
Mnculwane, H.T. 2022. Rare earth elements
determination by inductively coupled plasma mass spectrometry after alkaline
fusion preparation. Analytica 3(1): 135-143.
Niskanen, J., Lahtinen,
M., & Perämäki, S. 2022. Acetic acid leaching of
neodymium magnets and iron separation by simple oxidative precipitation. Cleaner
Engineering and Technology 10: 100544.
Noorashikin, M.S., Mohamad, S. & Abas, M.R.B.
2013. Cloud Point Extraction (CPE) of parabens using nonionic surfactant phase separation. Separation Science and Technology 48(11):
1675-1681.
Norhazirah Azhar, Khaironie Mohamed Takip, Roshasnorlyza Hazan, Wilfred Selyvester Paulus, Nur
Aqilah Sapiee & Jacqueline Kones. 2020. Solvent
extraction of thorium from Malaysian xenotime using tributyl phosphate (TBP). IOP
Conference Series; Materials Science and Engineering 785: 012015.
Norseyrihan, M.S., Noorashikin,
M.S., Adibah, M.S.N. & Yusoff,
F. 2016. Cloud point extraction of methylphenol in
water samples with low viscosity of non-ionic surfactant Sylgard 309 coupled with high-performance liquid chromatography. Separation Science
and Technology 51(14): 2386-2393.
Pan, J., Zhao, X., Zhou, C., Yang, F.,
& Ji, W. 2022. Study on Solvent Extraction of Rare Earth Elements from
Leaching Solution of Coal Fly Ash by P204. Minerals 12(12): 1547.
Pusporini, N.D., Sediawan,
W.B., Wahyu Rachmi Pusparini,
W.R., Ariyanto, T. & Sulistyo, H.
2021. Equilibrium analysis of neodymium - yttrium extraction in nitric acid
media with D2EHPA as solvent. Chemical Thermodynamics and Thermal Analysis 1-2: 100006.
Sanjith Udayakumar, Norlia Baharun, Sheikh Abdul Rezan, Aznan Fazli Ismail & Khaironie Mohamed Takip.
2021. Economic evaluation of thorium oxide production from monazite using
alkaline fusion method. Nuclear Engineering and Technology 53(7):
2418-2425.
Stein, R.T., Kasper, A.C. & Veit, H.M. 2022. Recovery of rare earth elements present in
mobile phone magnets with the use of organic acids. Minerals 12: 668.
Sun, P-P., Kim, D-H. & Cho, S-Y. 2018.
Separation of neodymium and dysprosium from nitrate solutions by solvent
extraction with Cyanex272. Minerals Engineering 118: 9-15.
Wang, L., Li, Y. & Zhang, Q. 2022.
Advances in leaching techniques for rare earth elements from secondary sources:
A review. Journal of Environmental Management 315: 114373.
Wang, S., Li, Q. & Zhang, Y. 2020.
Selective leaching of rare earth elements using organic acids. Minerals 10(7): 608-618.
Zhou, Y., Li, Z. & Li, Q. 2018. The
effects of mineral matrix on the efficiency of rare earth element leaching. Minerals 8(4): 157.
Zhao, K., Liu, W. & Zheng, X. 2021.
Corrosion resistance of materials in organic acid-based leaching solutions. Corrosion
Science 176: 109013.
Zhu, Y. & Zhang, L. 2021. Rare earth
elements: Applications and technological advancements. In Handbook on the
Physics and Chemistry of Rare Earths 58: 123-156.
*Pengarang untuk surat-menyurat;
email: noorashikin@ukm.edu.my
|